Data–based Fuzzy Modeling

نویسنده

  • T. Slawinski
چکیده

The use of fuzzy logic for the modeling of processes (such as a technical process or the behavior of a human operator in a process) is often motivated by the interpretability of the resulting fuzzy system/model. In fuzzy models, the dependencies of the variables of the considered process are described by qualitative (linguistic) if–then rules, which correspond to the way in which human knowledge is usually presented. The main advantages of interpretability are a higher acceptance by the users of the fuzzy model, and the increased possibility for tuning and adapting the fuzzy model by hand.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Neuro-fuzzy Controller Design of a Wind Turbine in Full-load Region Based on Operational Data

In this paper, dynamic modeling of a Vestas 660 kW wind turbine and its validation are performed based on operational data extracted from Eoun-Ebn-Ali wind farm in Tabriz, Iran. The operational data show that the turbine under study, with a classical PI controller, encounters high fluctuations when controlling the output power at its rated value. The turbine modeling is performed by deriving th...

متن کامل

ANFIS modeling and validation of a variable speed wind turbine based on actual data

In this research paper, ANFIS modeling and validation of Vestas 660 kW wind turbine based on actual data obtained from Eoun-Ebn-Ali wind farm in Tabriz, Iran, and FAST is performed. The turbine modeling is performed by deriving the non-linear dynamic equations of different subsystems. Then, the model parameters are identified to match the actual response. ANFIS is an artificial intelligent tech...

متن کامل

A new framework for high-technology project evaluation and project portfolio selection based on Pythagorean fuzzy WASPAS, MOORA and mathematical modeling

High-technology projects are known as tools that help achieving productive forces through scientific and technological knowledge. These knowledge-based projects are associated with high levels of risks and returns. The process of high-technology project and project portfolio selection has technical complexities and uncertainties. This paper presents a novel two-parted method of high-technology ...

متن کامل

Improvement of Rule Generation Methods for Fuzzy Controller

This paper proposes fuzzy modeling using obtained data. Fuzzy system is known as knowledge-based or rule-bases system. The most important part of fuzzy system is rule-base. One of problems of generation of fuzzy rule with training data is inconsistence data. Existence of inconsistence and uncertain states in training data causes high error in modeling. Here, Probability fuzzy system presents to...

متن کامل

A robust least squares fuzzy regression model based on kernel function

In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...

متن کامل

Evaluation of hybrid fuzzy regression capability based on comparison with other regression methods

In this paper, the difference between classical regression and fuzzy regression is discussed. In fuzzy regression, nonphase and fuzzy data can be used for modeling. While in classical regression only non-fuzzy data is used. The purpose of the study is to investigate the possibility of regression method, least squares regression based on regression and linear least squares linear regression met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011